Binding and internalization of glucuronoxylomannan, the major capsular polysaccharide of Cryptococcus neoformans, by murine peritoneal macrophages.
نویسندگان
چکیده
Glucuronoxylomannan (GXM), the major component of the capsular polysaccharide of Cryptococcus neoformans, is essential to virulence of the yeast. Previous studies found that the interaction between GXM and phagocytic cells has biological consequences that may contribute to the pathogenesis of cryptococcosis. We found that GXM binds to and is taken up by murine peritoneal macrophages. Uptake is dose and time dependent. Examination of the sites of GXM accumulation by immunofluorescence microscopy showed that the pattern was discontinuous and punctate both on the surfaces of macrophages and at intracellular depots. Although resident macrophages showed appreciable accumulation of GXM, uptake was greatest with thioglycolate-elicited macrophages. A modest stimulation of GXM binding followed treatment of resident macrophages with phorbol 12-myristate 13-acetate, but treatment with lipopolysaccharide or gamma interferon alone or in combination had no effect. Accumulation of GXM was critically dependent on cytoskeleton function; a near complete blockade of accumulation followed treatment with inhibitors of actin. GXM accumulation by elicited macrophages was blocked by treatment with inhibitors of tyrosine kinase, protein kinase C, and phospholipase C, but not by inhibitors of phosphatidylinositol 3-kinase, suggesting a critical role for one or more signaling pathways in the macrophage response to GXM. Taken together, the results demonstrate that it is possible to experimentally enhance or suppress binding of GXM to macrophages, raising the possibility for regulation of the interaction between this essential virulence factor and binding sites on cells that are central to host resistance.
منابع مشابه
Receptor-mediated clearance of Cryptococcus neoformans capsular polysaccharide in vivo.
Cryptococcus neoformans capsular glucuronoxylomannan (GXM) is shed during cryptococcosis and taken up by macrophages. The roles of the putative GXM receptors CD14, CD18, Toll-like receptor 2 (TLR2), and TLR4 in GXM clearance from serum and deposition in the liver and spleen in receptor-deficient mice were studied. While alterations in the kinetics of GXM redistribution were seen in the mutant m...
متن کاملCryptococcus neoformans glucuronoxylomannan induces macrophage apoptosis mediated by nitric oxide in a caspase-independent pathway.
Glucuronoxylomannan (GXM) is the major component of Cryptococcus capsular polysaccharide, which represents an essential virulence factor for this yeast. Cryptococcus neoformans infections in immunocompetent rats are associated with inducible nitric oxide synthase (iNOS) expression and nitric oxide (NO) production by macrophages. This study demonstrates in vitro and in vivo that GXM promotes iNO...
متن کاملBinding of glucuronoxylomannan to the CD14 receptor in human A549 alveolar cells induces interleukin-8 production.
Glucuronoxylomannan (GXM) is the major capsular polysaccharide of Cryptococcus neoformans. GXM receptors have been characterized in phagocytes and endothelial cells, but epithelial molecules recognizing the polysaccharide remain unknown. In the current study, we demonstrate that GXM binds to the CD14 receptor in human type II alveolar epithelial cells, resulting in the production of the proinfl...
متن کاملGlucuronoxylomannan from Cryptococcus neoformans down-regulates the enzyme 6-phosphofructo-1-kinase of macrophages.
The encapsulated yeast Cryptococcus neoformans is the causative agent of cryptococosis, an opportunistic life-threatening infection. C. neoformans is coated by a polysaccharide capsule mainly composed of glucuronoxylomannan (GXM). GXM is considered a key virulence factor of this pathogen. The present work aimed at evaluating the effects of GXM on the key glycolytic enzyme, 6-phosphofructo-1-kin...
متن کاملThe still obscure attributes of cryptococcal glucuronoxylomannan.
Glucuronoxylomannan (GXM) is the major capsular polysaccharide of Cryptococcus neoformans. It is essential for fungal virulence and causes a number of deleterious effects to host cells. During the last decades, most of the experimental models designed to study the roles of GXM during cryptococcal infection were based on the stimulation of animal cells. This most commonly involved macrophages or...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Infection and immunity
دوره 74 1 شماره
صفحات -
تاریخ انتشار 2006